Matematikos Guru

Išmokite matematiką kartu su Matematikos Guru

  • Pradžia
  • Į Gimnaziją
  • PUPP
  • VBE I
  • Skaičiuoklės
  • Ar galite išspręsti?

Atvirkštinė Pitagoro teorema





Pitagoro teorema yra labai svarbi teorema, kuri yra susijusi su stačiuoju trikampiu. Ji teigia, kad stačiakampio trikampio statinių kvadratų suma yra lygi įžambinės kvadratui, t.y.:


BC² = AC² + AB²


Šioje formulėje:

  • BC – stataus trikampio △ABC įžambinė
  • AC ir AB  –  stataus trikampio △ABC statiniai

Kartais gali prireikti atvirkštinės Pitagoro teoremos, kadangi gali būti uždaviniai, kuriuose bus duoti įžambinės ir vienos iš statinių ilgiai, ir reikės surasti kito statinio ilgį. Taip pat gali teikti įrodinėti, kad trikampis yra statusis, jeigu bus duoti trikampio kraštinių ilgiai.

Atvirkštinė Pitagoro teorema

Atvirkštinė Pitagoro teorema teigia:

  • trikampis, kurio dviejų kraštinių ilgių kvadratų suma lygi trečiosios kraštinės kvadratui, yra status.

Jeigu AC² + AB² = BC², tai ∠C = 90º


Šioje formulėje:

  • BC – stataus trikampio △ABC įžambinė
  • AC ir AB  –  stataus trikampio △ABC statiniai

Populiariausios temos:

  • Trikampio plotas, trikampio ploto formulė
  • Pitagoro teorema
  • Stačiojo trikampio plotas
  • Apskritimo plotas
  • Skritulio plotas
  • Apskritimo ilgis
  • Lygiagretainis
  • Rombas
  • Trapecija, trapecijos plotas
  • Cilindro tūris (ritinio tūris)
  • Kvadrato plotas
  • Koordinatės
  • Abscisė
  • Statusis trikampis
  • Lygiašonė trapecija
  • Kūgio tūris
  • Daugyba
  • Dalyba
  • Apskritimas
  • Kūgis
  • Diskriminantas, diskriminanto formulė
  • Natūralieji skaičiai
  • Matematikos formulės
  • Laipsniai
  • Mediana
  • Moda
  • Stačiakampio plotas
  • Lygiašonis trikampis
  • Lygiašonio trikampio plotas
  • Lygiakraščio trikampio plotas
  • Kubas
  • Procentai
  • Stačiakampis
  • Taisyklingoji piramidė
  • Greitosios daugybos formulės
  • Proporcija
  • Kvadratas
  • Skritulys
  • Rutulys
  • Kitos temos

Grįžkite iš Atvirkštinė Pitagoro teorema temos į MatematikosGuru.com pradžią

Gaukite naujienas el. paštu






Thank you!

You have successfully joined our subscriber list.


Sekite mūsų naujienas:




Visos teisės saugomos @2024, MatematikosGuru.com | Privatumo politika | Naudojimosi taisyklės ir kontaktai

Tvarkyti sutikimą
Siekdami teikti geriausią patirtį, įrenginio informacijai saugoti ir (arba) pasiekti naudojame tokias technologijas kaip slapukus. Jei sutiksime su šiomis technologijomis, galėsime apdoroti duomenis, tokius kaip naršymo elgsena arba unikalūs ID šioje svetainėje. Nesutikimas arba sutikimo atšaukimas gali neigiamai paveikti tam tikras funkcijas ir funkcijas.
Funkcinis Visada aktyvus
Techninė saugykla arba prieiga yra griežtai būtina siekiant teisėto tikslo – sudaryti sąlygas naudotis konkrečia paslauga, kurios aiškiai paprašė abonentas arba naudotojas, arba tik tam, kad būtų galima perduoti ryšį elektroninių ryšių tinklu.
Parinktys
Techninė saugykla arba prieiga yra būtina teisėtam tikslui išsaugoti nuostatas, kurių neprašo abonentas ar vartotojas.
Statistika
Techninė saugykla arba prieiga, kuri naudojama tik statistiniais tikslais. Techninė saugykla arba prieiga, kuri naudojama tik anoniminiais statistikos tikslais. Be teismo šaukimo, jūsų interneto paslaugų teikėjo savanoriško įsipareigojimo ar papildomų įrašų iš trečiosios šalies, vien šiuo tikslu saugoma ar gauta informacija paprastai negali būti naudojama jūsų tapatybei nustatyti.
Rinkodara
Techninė saugykla arba prieiga reikalinga norint sukurti naudotojo profilius reklamai siųsti arba sekti vartotoją svetainėje ar keliose svetainėse panašiais rinkodaros tikslais.
Tvarkyti parinktis Tvarkyti paslaugas Tvarkyti {vendor_count} pardavėjus Skaitykite daugiau apie šiuos tikslus
Peržiūrėti nuostatas
{title} {title} {title}